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Abstract. The collective pairing Hamiltonian is obtained in the framework of the generator coordinate
method in the Gaussian overlap approximation with a slightly modified BCS function used as a generator
function. The collective variable α, measuring the monopole moment of the pairing field, and the gauge
transformation angle φ are chosen as generator coordinates. The vibrational ground states are calculated
by diagonalisation of the collective pairing Hamiltonian in the harmonic-oscillator basis.

PACS. 21.30.-x Nuclear forces – 21.60.Ev Collective models

1 Introduction

The collective pairing Hamiltonian was originally intro-
duced in ref. [1], where the intrinsic deformation of the
pairing field α, related to the BCS gap parameter ∆, and
the gauge transformation angle φ were used as collective
variables. The pairing Hamiltonian was then derived in the
framework of the cranking approximation. A more general
method which determines the wave functions and the col-
lective Hamiltonian is the Generator Coordinate Method
(GCM). The GCM derivation of the collective Hamilto-
nian with the BCS functions as the generator functions
were already performed in refs. [2–4], where the Gaus-
sian Overlap Approximation (GOA) of the generator wave
functions was used. The collective pairing Schrödinger
equation was constructed using the single-particle plus
monopole pairing Hamiltonian.

The aim of this paper is to derive collective vibrations
of the pairing field in the GCM + GOA approach for the
Hamiltonian based on the single-particle Nilsson poten-
tial [5] and the δ-pairing interaction [6–8]. The latter re-
quires introducing a suitable collective variable different
from the monopole pairing gap used in [2]. Here we have
used the same generator coordinate α =

∑
ukvk as in

ref. [1], which, as suggested in ref. [9], is a natural choice
for this type of collective motion.

The paper is organized as follows: In sect. 2 we dis-
cuss the properties of the δ-pairing interaction. In sect. 3
the collective coordinates and the form of the collective
pairing Hamiltonian are introduced. The formulae for the
GCM + GOA mass parameters are compared to the
cranking ones. The method of diagonalising the collec-
tive pairing Hamiltonian is described in sect. 4. Section 5
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contains numerical results and sect. 6 conclusions. In ap-
pendix A we discuss the multipole expansion of the δ force
and demonstrate the validity of our choice of α as the col-
lective coordinate.

2 δ-pairing forces

The nuclear mean-field Hamiltonian with the residual
pairing interaction can be written as

Ĥ = Ĥs.p. + Ĥpair, (1)

where

Ĥs.p. =
∑
k>0

〈k|ĥ|k〉(c†kck + c†
k̄
ck̄), (2)

Ĥpair = −
∑

k,l>0

Vkk̄ll̄c
†
kc

†
k̄
cl̄cl . (3)

The summation runs over the eigenstates |k〉 of the single-
particle Hamiltonian ĥ. The antisymmetrized matrix ele-
ment of the pairing interaction Vkk̄ll̄ in the pairing Hamil-
tonian (3) is given by the following expression:

Vkk̄l̄l =
∫

d3r1d3r2
∑
σ1σ2

Φ∗
k(r1,σ1) Φ∗̄

k(r2,σ2)

×V τ (r1,σ1; r2,σ2)
× [Φl(r1,σ1)Φl̄(r2,σ2)−Φl̄(r1,σ1)Φl(r2,σ2)] . (4)

Here Φk(r,σ) is the single-particle eigenfunction of ĥ in
the space (r) and spin (σ) representation and Φk̄(r,σ)
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is its time reversal counterpart. V τ (r1,σ1; r2,σ2) is the
δ-pairing force [6]

V τ (r1,σ1; r2,σ2) = V τ
0

1 − σ1 · σ2

4
δ(r1 − r2) . (5)

In the following we consider the proton-proton (p-p) and
neutron-neutron (n-n) part of the interaction only. Taking
this into account, one obtains

Gkl = Vkk̄ll̄ = V0

∫
d3rρk(r)ρl(r) , (6)

where
ρk(r) = |Φk(r)|2 (7)

and V0 is the pairing interaction strength as adjusted in
ref. [10]. The pairing gap equations become

∆k =
1
2

∑
l>0

Gkl
∆l√

(el − λ)2 +∆l
2
, (8)

where el is the single-particle energy and the Fermi level
λ is determined from the particle number equation

N =
∑
k>0


1 − ek − λ√

(ek − λ)2 +∆k
2


 . (9)

The coupled set of eqs. (8) and (9) is solved numerically
by the appropriate iteration procedure.

3 Collective pairing Hamiltonian

Following ref. [11] we construct the monopole pairing op-
erator (see appendix A) which characterizes the amplitude
of excitations connected with vibrations of the pair den-
sity:

Â =
1
2

∑
k>0

(
e−2iφc†kc

†
k̄

+ e2iφck̄ck

)
. (10)

The pair condensate can be described by the mean value
of the operator (10) in the BCS-like state

|αφ〉 = eiNφ
∏
k>0

(
uk + vke

−2iφc†kc
†
k̄

)
|0〉 , (11)

where N is the number of particles, φ is the gauge angle
and the average pairing gap is given by the expectation
value of the operator (10):

α = 〈αφ|Â|αφ〉 =
∑
k>0

ukvk . (12)

Using (11) as a generator function and α, φ as generator
coordinates and following the steps of ref. [2] the collective
Hamiltonian

Ĥcoll = − �
2

2
√

detγαα

∂

∂α

√
detγααM−1

αα

∂

∂α

−1
2

�
2M−1

φφ

∂2

∂φ2

−i�
Im

〈
αφ|

←
∂

∂φĤ|αφ
〉

γφφ

∂

∂φ
+ V (α) , (13)

is derived. In eq. (13) γαα, γφφ are related to the widths
of the Gaussian overlap and M−1

αα, M−1
φφ are the compo-

nents of the inverse mass tensor. The quantities appear-
ing in eq. (13) are analogous to the general expressions
obtained for the ∆ and φ coordinates in the monopole
pairing case [2]. V (α) is the collective pairing potential
equal to

V (α) = 〈αφ|Ĥ|αφ〉 − E0 , (14)

where E0 is the so-called zero-point energy. The collective
pairing Hamiltonian (13) is Hermitian with the Jacobian

dτ =
√
γααγφφ αdα dφ . (15)

It means that the eigenfunctions of (13) should be orthog-
onal with the above measure.

The mean value of the Hamiltonian (1) is evaluated
using the constraints N = const and α = const, which
leads to minimization of the average value of the operator

Ĥ ′ = Ĥ − λ(N̂ − 〈αφ|N̂ |αφ〉) − ξ(Â− 〈αφ|Â|αφ〉) , (16)

calculated in the BCS state (11). Here λ and ξ are La-
grange multipliers.

The expectation value of the BCS Hamiltonian in
eq. (14) is given by

EBCS = 〈αφ|Ĥ|αφ〉 =

2
∑
k>0

ekv
2
k − 1

2

∑
k>0

∆2
k

Ek
−

∑
k>0

Gkkv
4
k , (17)

where Ek =
√

(ek − λ)2 +∆2
k is the quasiparticle energy.

The final expressions for the nonvanishing components
of the metric and mass tensors are

γαα = σ2
∑

k

(ek − λ)2

16E4
k

, (18)

γφφ =
∑

k

∆2
k

E2
k

, (19)

M−1
αα =

∑
k

Ekσ
2 / γ2

αα , (20)

M−1
φφ =

∑
k

∆2
k

Ek
/ γ2

φφ , (21)

where σ is equal to

σ =

(∑
k

(ek − λ)2

4E3
k

)−1

. (22)

The zero-point energy appearing in eq. (14) reads

E0 = Eα
0 + Eφ

0 =

1
2

(∑
k

(ek − λ)2

16E3
k

σ2 / γαα +
∑

k

∆2
k

Ek
/ γφφ

)
. (23)
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The first term in eq. (23) represents the collective cor-
relations in the ground-state energy, whereas the second
corresponds to the approximate particle number projec-
tion [4].

An alternative method of treating collective vibrations
is the cranking model [12,13]. The mass parameters in this
case read

Mcr
αα = 2σ2

∑
k

(
ek − λ

16E3
k

)2

, (24)

Mcr
φφ =

∑
k

∆2
k

E3
k

(25)

and the collective potential is usually assumed to be equal
to EBCS (17).

4 Diagonalisation of the collective pairing
Hamiltonian

Having found the collective potential, the mass and the
metric tensors, we can evaluate the collective Hamilto-
nian numerically. Only the vibrational spectra will be con-
structed here as the quasirotational states correspond to
the bands built from the ground-states function of the
neighbouring even-even isotopes (or isotones). In the first
step we perform a transformation from the α-coordinate
to a new variable x in which the mass parameter Mxx is
nearly constant:

Mxx ≈ Mαα

(
∂α

∂x

)2

= const . (26)

The mass parameter Mαα is a rapidly decreasing function
of α and can be approximated by the function

Mαα =
b

(α+ α0)2
, (27)

where α0 and b parameters are chosen to approximate the
mass parameter in the best way. Variables x and α are
connected through the equation

x =
√
b/µ ln

(
1 +

α

α0

)
, (28)

where µ is an arbitrary constant. The basis states used
to diagonalise the Hamiltonian (13) are generated by the
harmonic-oscillator Hamiltonian

ĤB = − �
2

2Mxx

d2

dx2
+

1
2
Mxxω

2x2 , (29)

with the frequency ω determined from the plateau condi-
tion of the energy ∂E/∂ω ≈ 0, where E is the ground-state
energy of the collective Hamiltonian (13). In our case only
the even eigenstates are picked (see [2]):

ĤBψi =
(
i+

1
2

)
ψi , i = 0, 2, 4, . . . . (30)
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Fig. 1. Pairing potentials: the BCS energy (dotted line), the
GCM collective potential (solid line) and the particle number
corrected BCS energy EBCS −Eφ

0 (thin solid line) as functions
of the collective coordinate α for protons in 148Ce. The zero
value on the abscissa corresponds to the minimum of the BCS
energy.

These eigenstates which satisfy the usual normalization
conditions ∫ ∞

0

ψiψjdx = δij (31)

are employed to calculate the matrix elements of the col-
lective Hamiltonian (eq. 13). The digonalization was per-
formed in a basis of Nmax = 19 oscillator shells.

5 Results

We have considered a few nuclei in the rare-earth region.
The A = 165 parameter set of the single-particle Nilsson
potential is used [14]. The δ-pairing strengths as obtained
in ref. [10] are

V neutrons
0 = 230 MeV fm3 ,

V protons
0 = 240 MeV fm3 . (32)

The fit of the V0 parameters was done for the pairing
window with 2

√
15n levels closest to the Fermi energy

where n = N for neutrons and n = Z for protons [14].
Figure 1 shows the pairing potentials for BCS and

GCM models. The dotted line represents the pure BCS
energy (17) as a function of the collective coordinate α,
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Fig. 2. Components of GCM and the cranking mass parame-
ters for protons in 148Ce. The Mαα components are multiplied
by a factor 100. The components Mφφ are in natural units.

whereas the solid line corresponds to the GCM collective
potential (14). The particle number corrected BCS energy,
i.e., the one with extracted Eφ

0 energy is also shown (thin
solid line). The zero value on the abscissa corresponds
to the minimum of the BCS energy. The particle number
projected energy is about 2 MeV deeper than the BCS en-
ergy minimum and its position is shifted in the direction
of larger α. Analogously, the GCM ground-state energy
which additionally contains the zero-point energy corre-
sponding to the pure α vibrations has a minimum shifted
by a similar amount towards larger α.

The Mαα and Mφφ components of the mass tensor for
both GCM and the cranking model are shown in fig. 2.
The ratio of the α-component of the cranking mass (dot-
ted line) to the GCM mass (solid line) is close to 2/3 in
the vicinity of the minimum of the GCM potential. The
decrease of the collective mass with α (or ∆) has a sig-
nificant influence on the spontaneous fission half-lives of
heavy nuclei, as shown for the ∆ collective coordinate, as
well as on the height of the fission barriers (see, e.g., [15]).
Similarly, in case of the collective Bohr model calcula-
tions [16,17] the inclusion of the coupling of quadrupole
vibrations improves significantly the agreement with the
experimental data.

In fig. 3 we show the collective potential V (α) (solid
line), the GCM mass parameter Mαα(α) (dotted line)
and the probability density P = |Φ0(α)|2√γααγφφ of the
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Fig. 3. The collective potential V (α) (solid line), the GCM
mass parameter Mαα(α) (dotted line) and the probability den-
sity P = |Φ0(α)|2√γααγφφ (thin solid line) of the ground state

for protons in 148Ce. The ground-state energy E0 is marked.
The arrows indicate the positions of the minimum of the po-
tential and the maximal value of the probability distribution
on the α axis.

ground state (thin solid line). The short line segment in
the middle of the figure marks the position of the ground-
state energy. The arrows indicate the positions of the min-
imum of the potential (bottom scale) and the maximal
value of the probability distribution (top scale). The α
value of the equilibrium is 9.3 and the most probable value
is 7.6. The latter is shifted towards smaller α values which
implies the increase of the Mαα by a 1.5 factor on aver-
age. This behaviour is common for the majority of nuclei
in the considered region. As shown in ref. [16] in case of
monopole pairing the use of the most probable value of
the gap parameter (instead of the BCS gap) leads to a
considerable improvement of the predictive power of the
Bohr Hamiltonian.

6 Conclusions

The first-excited collective pairing vibrational states for
even-even nuclei in the rare-earth region appear at en-
ergies close to 2.5 MeV for protons and 4.5 MeV for
neutrons. Usually they have higher energies than two-
quasiparticle excitations and consequently one has to in-
clude these correlations in the ground state, only.
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Since the pairing vibrations are strongly coupled with
shape degrees of freedom of the nucleus, it is hard to com-
pare the results (which are similar to that obtained with
the coordinate ∆) with experimental data.

Finally, it should be emphasized that the role of the
collective coordinate α is analogous to the ∆-coordinate
considered earlier.

We are indebted to Jerzy Matyjasek and Paul Stevenson for
careful reading of the manuscript and valuable comments.

Appendix A. Multipole expansion of the δ(r)
force

In the following we consider the short-range interaction
operating between equivalent nucleons (T = 1, protons or
neutrons)

V12(δ) = V (r1,σ1; r2,σ2)

= V0
1 − σ1 · σ2

4
δ3(r1 − r2) , (A.1)

equal to V0δ
3(r) in case of the spin singlet (S = 0) and to

0 for the spin triplet (S = 1).
One can use the following representation of δ(r):

δ3(r1 − r2) =
1

r1r2
δ(r1 − r2)δ(cos θ1 − cos θ2)δ(φ1 − φ2) .

(A.2)
This form is very useful when separating the angular and
radial parts. Using the relation

δ(cos θ1 − cos θ2)δ(φ1 − φ2) =∑
K

2K + 1
4π

∑
M

Y ∗
KM (θ1, φ1)YKM (θ2, φ2) , (A.3)

and the angular-momentum algebra (see Talmi [18]), one
gets the following energy shift of the identical (T = 1)
particles state |j1j2J〉:

Vδ(J) = V0 FR(n1l1n2l2) I(j1j2J) , (A.4)

where

FR(n1l1n2l2) =
1
4π

∫
1
r2
R2

n1l1(r)R
2
n2l2(r)dr (A.5)

and

I(j1j2J) =
(2j1 + 1)(2j2 + 1)

1 + δn1n2δl1l2

(
j1 j2 J

1/2 −1/2 0

)2

,

(l1 + l2 + J even) . (A.6)

Now we show that the δ interaction is separable in the
particle-particle channel. To do this, we define the creation
operators of a pair of particles coupled to the angular mo-
mentum JM :

P †
JM =

1√
2

∑
m1m2

(j1m1j2m2|JM)c†m1
c†m2

(A.7)

and its Hermite conjugate

PJM =
(
P †

JM

)†
. (A.8)

Here a†m creates a nucleon in (nljm) single-particle state.
The δ interaction can be written in second quantized form

V12(δ) =
∑

J, even

Vδ(J)
∑
M

P †
JMPJM . (A.9)

Note that Vδ(J) does not depend on the third component
M of the total angular momentum of a pair.

Since the pairing force is the interaction in the particle-
particle channel with the third angular-momentum com-
ponent M = 0, the operator P †

JM defined in eq. (A.7)
simplifies to P †

J ≡ P †
J,M=0 and the summation in (A.7)

runs over m = m1 = −m2 only.
The part of the interaction corresponding to J = 0 is

the classical pairing (monopole pairing interaction). The
next component J = 2 forms the quadrupole pairing force
and so on. The monopole pairing term reads

Vδ(0)
∑

m,m′
c†mc

†
m̄cm̄′cm′ . (A.10)

The operator c†m̄ creates a particle in the time reversal
state (m̄) which is defined by

c†m̄ = (−1)j−mc†−m . (A.11)

The quadrupole (J = 2) part of eq. (A.9) reads

Vδ(2)
∑

m,m′
(j1mj2 −m|20)(j1m′j2 −m′|20)c†mc

†
m̄cm̄′cm′ ,

(A.12)
etc. Each term in eq. (A.9) separates in a similar manner.
The strength Vδ(J) of each multipole is different and de-
pends on V0 and the quantum numbers (n1l1j1), (n2l2j2)
and J (see eq. (A.4)).

It is easy to show that for, e.g., j1 = j2 = 9/2 the ratio
Vδ(2)/Vδ(0) ≈ 0.24, Vδ(4)/Vδ(0) ≈ 0.12 etc. Therefore, the
state J = 0 has the largest energy shift towards the lowest
energies (assuming V0 is a positive constant).

In analogy to eq. (10) one can define the following
operators (only even J values are allowed; see eq. (A.9)):

ÂJ =
1
2

(e−2iφP †
J + e2iφPJ) , J = 0, 2, 4, . . . . (A.13)

The operators ÂJ describe different multipolarities of the
pairing field. Their average values are the multipole de-
formations of the pairing field. The mean–pairing-field
Hamiltonian equivalent to the δ force expressed in terms
of the field operators ÂJ reads

V̂12(δ) =
∑

J, even

Vδ(J)αJAJ , (A.14)

where
αJ = 〈ÂJ〉 (A.15)
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is the multipole deformation of the pairing field. The term
Â0 corresponds to the operator Â used in the present pa-
per (see eq. (10)) and describes the monopole-type defor-
mation and the parameter α0 corresponds to the collective
deformation parameter α used in the text:

α ∼ α0 . (A.16)
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2. A. Góźdź, K. Pomorski, M. Brack, E. Werner, Nucl. Phys.
A 442, 50 (1985).
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